专科治疗白癜风方法 http://www.baidianfeng51.cn/m/犹豫了很久要不要讲SVD的python实现,今天还是写了吧,纠结的原因在于我对SVD也是新手理解,很多东西也是一知半解,怕误导大家。所以这篇文章也只是我个人的理解,不对之处还请大家评论区帮我纠正。气象中所说的SVD方法是干吗用的?首先还是先讲讲什么是SVD,在气象中的作用是什么,不想看我废话的直接拉下去看代码。我们通常计算两个变量之间的相关关系时往往使用相关系数计算,然而相关系数只能用于两个序列(两个一维变量)或者一个序列和一个场(一个一维变量和一个三维变量)之间的相关关系,那如果我们想找到两个变量场之前的相关性,这时就要用到SVD了。前边的文章有讲到EOF经验正交分解,核心思想是提取变量场的几个主要模态,并且计算各个模态的时间系数。那么SVD则可以理解为,对两个场分别提取模态,看两个变量的模态之间的协同变化关系。SVD方法中几个特殊名词的概念?
SVD分析中有一些特殊名词,我用通俗的话来解释。比如说:左场,右场,分别对应我们的要求的两个变量场,谁左谁右并不重要。左场提取的模态称为左奇异向量,右场提取的模态为右奇异向量。需要注意的是,各个场的奇异向量均为相互正交的。第一左奇异向量和第一右奇异向量及其各自的时间系数共同构成了SVD的第一模态,也可以叫第一对模态。还有三个重要的名词要掌握。第一个是总体相关系数,指的是一对奇异向量对应的左右时间系数的相关系数,用来看左场第一模态和右场第一模态的相关性(总体相关系数是一个数)。第二个名词是同性相关系数,表示原场和原场某一模态的时间序列的相关系数(为一个场),在一定程度上可以反应该变量的一个遥相关型。第三个名词是异性相关系数,代表原场(比如左场)和对立场(比如右场)某个模态的时间序列的相关系数(为一个场),表是一个场对另一个场的影响关键区。这段话说的十分绕口,等下结合例子再认真想想几个名词的含义应该会清楚一些。那么就开始吧。
核心代码首先是讲下核心代码,官方文档参考